Assignment \#1
Construct ODES for the following systems:

1) 10^{\prime}

Input: U_{i} Output. No
2) 10^{\prime}

Input: $F(t)$
Output $x_{1}(t)$
4) 20^{\prime}

Input: x_{i}
Output: x_{0}

Input $u_{1}(t)$
Output: $u_{2}(t)$

Solution for Assignment \#1.

1) From KCL:

$$
\begin{equation*}
i_{1}+i R_{1}=i i_{2} . \tag{1}
\end{equation*}
$$

The vol lace across R_{2} is U_{0}.
From KVL:

$$
\begin{aligned}
& u_{i}=u_{0}+u_{c_{1}} \\
&=u_{0}+u_{R_{1}} \\
& i_{R_{1}}=\frac{U_{R_{1}}}{R_{1}}=\frac{U_{i}-u_{0}}{R_{1}} \\
& i_{1}=c \frac{d u_{C_{1}}}{d t}=c \frac{d\left(u_{i}-u_{0}\right)}{d t} \\
& i_{R_{2}}=\frac{u_{0}}{R_{2}}
\end{aligned}
$$

By using 0 . we have.

$$
\begin{aligned}
& C \frac{d\left(u_{i}-u_{0}\right)}{d t}+\frac{u_{i}-U_{0}}{R_{1}}=\frac{U_{0}}{R_{2}} \\
& c \dot{u}_{i}-\left(\dot{U}_{0}+\frac{1}{R_{1}} u_{i}-\frac{1}{R_{1}} U_{0}=\frac{1}{R_{2}} U_{0}\right. \\
& R_{1} R_{2} C \dot{U}_{0}+\left(R_{1}+R_{2}\right) u_{0}=R_{1} R_{2} C \dot{U}_{i}+R_{2} u_{i}
\end{aligned}
$$

2) The current in this circuit is; for R_{2}, C_{2}

$$
\left.\begin{array}{l}
U_{R_{2}}=i R_{2} . \\
U_{R_{2}}+U_{C_{2}}=U_{0} .
\end{array}\right\} \Rightarrow U_{c_{2}}=U_{0}-U_{R_{2}}
$$

For capacitor C_{2}. we have.

$$
\begin{aligned}
& i=C_{2} \frac{d U_{c_{2}}}{d t}=C_{2} \frac{d\left(U_{0}-U_{R_{2}}\right)}{d t} \\
&=C_{2} \frac{d\left(U_{0}-i R_{2}\right)}{d t} \\
& \Rightarrow \quad=C_{2} \dot{U}_{0}-C_{2} R_{2} \dot{i} \\
& \Rightarrow \quad C_{2} \dot{U}_{0}-C_{2} R_{2} i
\end{aligned}
$$

For. R_{1}, C_{1}

$$
\left\{\begin{array}{l}
u_{R_{1}}=i R_{1} \\
u_{R_{1}}+u_{L_{1}}+u_{0}=u_{i}
\end{array} \Rightarrow \quad u_{c_{1}}=u_{i}-u_{0}-u_{R_{1}}\right.
$$

For C_{1}

$$
\begin{align*}
i=c_{1} \frac{d u_{c_{1}}}{d t} & =c_{1} \frac{d\left(u_{i}-u_{0}-u_{\left.R_{1}\right)}\right.}{d t} \\
& =c_{1} \frac{d\left(u_{i}-u_{0}-i R_{1}\right)}{d t} \\
& =c_{1} \dot{u}_{i}-c_{1} \dot{u}_{0}-C_{1} R_{1} \dot{i} \\
\Rightarrow \quad i & =c_{1} \dot{u}_{i}-C_{1} \dot{u}_{0}-C_{1} R_{1} i \tag{2}
\end{align*}
$$

From (1) \& (2), we can have

$$
C_{2} \dot{U}_{0}-C_{2} R_{2} \dot{i}=C_{1} \dot{U}_{i}-C_{1} \dot{U}_{0}-C_{1} R_{1} \dot{i}
$$

(B) $i=i$
or. $\frac{C_{2} \dot{u}_{0}-i}{R_{2} C_{2}}=\frac{C_{1} \dot{u}_{i}-C_{1} \dot{u}_{0}-i}{R_{1} C_{1}}$
(4) $i=i$

We use (4)

$$
\begin{align*}
\Rightarrow & R_{1} C_{1} C_{2} \dot{u}_{0}-R_{1} C_{1} i=R_{2} C_{1} C_{2} \dot{u}_{i}-R_{2} C_{1} C_{2} \dot{u}_{D}-R_{2} C_{2} i \\
& \left(R_{1} C_{1}-R_{2} C_{2}\right) i=\left(R_{1}+R_{2} C_{1} C_{2} \dot{u}_{0}-R_{2} C_{1} C_{2} \dot{u}_{i}\right. \\
\Rightarrow & i=\frac{\left(R_{1}+R_{2}\right) C_{1} C_{2} \dot{u}_{0}-R_{2} C_{1} C_{2} \dot{U}_{i}}{R_{1} C_{1}-R_{2} C_{2}} \tag{5}
\end{align*}
$$

Substitute (5) into (1)

$$
\begin{align*}
& \frac{\left(R_{1}+R_{2}\right) C_{1} C_{2} \dot{U}_{0}-R_{2} C_{1} C_{2} \dot{u}_{i}}{R_{1} C_{1}-R_{2} C_{2}}=C_{2} \dot{U}_{0}-C_{2} R_{2} \frac{\left(R_{1}+R_{2}\right) C_{1} C_{2} \ddot{u}_{0}-R_{2} C_{1} C_{2} \ddot{u}_{i}}{R_{1} C_{1}-R_{2} C_{2}} \\
& \left.\left(R_{1}+R_{2}\right) C_{1} C_{2} \dot{u}_{0}-R_{2} C_{1} C_{2} \dot{u}_{1}=\left(R_{1} C_{1}-R_{2} C_{2}\right) C_{2} \dot{u}_{0}-C_{2} R_{2}\left(R_{1}+R_{2}\right) C_{1} C_{2} \ddot{U}_{0}+C_{2} R_{2} R_{2} C_{1} C_{2}\right) \\
& R_{2} C_{2}\left(C_{1}+C_{2}\right) \dot{U}_{0}-R_{2} C_{1} C_{2} \dot{u}_{i}=-C_{2} R_{2}\left(R_{1}+R_{2}\right) C_{1} C_{2} \ddot{u}_{0}+C_{2} R_{2} R_{2} C_{1} C_{2} \ddot{u}_{i} \ddot{U}_{i} \tag{U}\\
& \left(C_{1}+C_{2}\right) \dot{u}_{0}-C_{1} \dot{u}_{i}=-\left(R_{1}+R_{2}\right) C_{1} C_{2} \ddot{u}_{0}+R_{2} C_{1} C_{2} \ddot{u}_{i} \\
& \left(R_{1}+R_{2}\right) C_{1} C_{2} \ddot{u}_{0}+\left(C_{1}+C_{2}\right) \dot{u}_{0}=R_{2} C_{1} C_{2} \ddot{u}_{i}+C_{1} \dot{u}_{i}
\end{align*}
$$

If the initial conditions for $U_{i} \& U_{0}$ are ${ }^{\circ} O$.
(b) becomes

$$
\begin{equation*}
\left(R_{1}+R_{2}\right) c_{1} c_{2} \dot{u}_{0}+\left(c_{1}+c_{2}\right) u_{0}=R_{2} c_{1} c_{2} \dot{u}_{i}+c_{1} u_{i} \tag{7}
\end{equation*}
$$

Both (6) \& (7) are wreck
3) Free body diagram for " m "

Spring: $F_{k}=k\left(x+x_{0}\right)$, where $x_{0}=m y / k$.
Damper: $F_{B}=f \dot{x}$
Lever: $F l_{1}=F_{2} l_{2} \Rightarrow F_{2}=\frac{l_{2}}{l_{2}} F$
Mass: $\quad F_{2}+m y-F_{k}-F_{B}=m \ddot{x}$

$$
\begin{aligned}
& \frac{l_{1}}{l_{2}} F+m y-k x-k x_{0}-f \dot{x}=m \ddot{x} \\
& m \ddot{x}+f \dot{x}+k x=\frac{h_{2}}{l_{2}} F
\end{aligned}
$$

4) First take point 1 to analyze. suppose the muss of point N is $m_{1} \Rightarrow$, with $m_{1}=0$

$$
\begin{aligned}
& F_{k_{2}}=k_{2}\left(x_{i}-x_{0}\right) \\
& \left.\begin{array}{rl}
F_{B_{2}}= & f_{2}\left(\dot{x}_{i}-\dot{x}_{0}\right) \\
F_{B_{1}}= & f_{1}\left(\dot{x}_{0}-\dot{x}_{2}\right) \\
F_{k_{2}}+F_{B_{2}}-F_{B_{1}}= & m_{1} \dot{x}_{0} \\
\quad=0 .
\end{array}\right\} \Rightarrow \begin{array}{l}
F_{B_{1}}=F_{k_{2}}+F_{B_{2}} \\
\\
\\
\quad f_{1}\left(\dot{x}_{0}-\dot{x}_{2}\right)=k_{2}\left(x_{i}-x_{0}\right)+f_{2}\left(\dot{x}_{i}-\dot{x}_{0}\right)(1)
\end{array}
\end{aligned}
$$

Second, take point 2 f to analyze.
suppose the mass of point 2 is m_{2}. with $m_{2}=0$

$$
\left.\begin{array}{l}
F_{k_{1}}=k_{1} x_{2} \\
F_{B_{1}}=f_{1}\left(\dot{x}_{0}-\dot{x}_{2}\right) \\
F_{B_{1}-}-F_{k_{1}}=m_{2} \ddot{x}_{2} \\
\quad=0
\end{array}\right\} \Rightarrow \begin{aligned}
& F_{B_{1}}=F_{k_{1}} \\
& f_{1}\left(\dot{x}_{0}-\dot{x}_{2}\right)=k_{1} x_{2}
\end{aligned}
$$

From (1) \& (2), we have.

$$
\begin{align*}
& k_{1} x_{2}=k_{2}\left(x_{i}-x_{0}\right)+f_{2}\left(\dot{x}_{1}-\dot{x}_{0}\right) \\
\Rightarrow & x_{2}=\frac{k_{2}}{k_{1}}\left(x_{i}-x_{0}\right)+\frac{f_{2}}{k_{1}}\left(\dot{x}_{i}-\dot{x}_{0}\right) \tag{3}
\end{align*}
$$

Substitule (3) into (2).

$$
\begin{aligned}
& f_{1}\left[\dot{x}_{0}-\frac{k_{2}}{k_{1}}\left(\dot{x}_{i}-\dot{x}_{0}\right)-\frac{f_{2}}{k_{1}}\left(\ddot{x}_{i}-\ddot{x}_{0}\right)\right]=k_{2}\left(x_{i}-x_{0}\right)+f_{2}\left(\dot{x}_{1}-\dot{x}_{0}\right) \\
& f_{1} \dot{x}_{0}-\frac{t_{1} k_{2}}{k_{1}}\left(\dot{x}_{1}-\dot{x}_{0}\right)-\frac{f_{1} f_{2}}{k_{1}}\left(\ddot{x}_{i}-\ddot{x}_{0}\right)=k_{2}\left(x_{i}-x_{0}\right)+f_{2}\left(\dot{x}_{i}-\dot{x}_{0}\right) \\
& k_{1} f_{1} \dot{x}_{0}-k_{2} f_{1}\left(\dot{x}_{1}-\dot{x}_{0}\right)-f_{1} f_{2}\left(\ddot{x}_{i}-\ddot{x}_{0}\right)=k_{1} k_{2}\left(x_{i}-x_{0}\right)+k_{1} f_{2}\left(\dot{x}_{i}-\dot{x}_{0}\right) \\
& f_{1} \ddot{x}_{0} \\
& f_{1} f_{2} \ddot{x}_{0}+\left(k_{1} f_{1}+k_{2} f_{1}+k_{1} f_{2}\right) \dot{x}_{0}+k_{1} k_{2} x_{0}=f_{1} f_{2} \ddot{x}_{i}+\left(k_{1} f_{2}+k_{2} f_{1}\right) \dot{x}_{i}+k_{1} k_{2} x_{i}
\end{aligned}
$$

$$
\text { 5) } \begin{aligned}
& i_{1}=C_{1} \frac{d u_{c_{1}}}{d t} \\
&=C_{1} \frac{d u_{1}}{d t}=C_{1} \dot{u}_{1} \\
& i R_{1}=\frac{u_{R_{1}}}{R_{1}}=\frac{u_{1}}{R_{1}} \\
& i_{2}=i_{C_{1}}+i_{R_{1}}=C_{1} \dot{u}_{1}+\frac{1}{R_{1}} u_{1} \\
& u_{R_{2}}=i_{2} R_{2} \\
& U_{C_{2}}=-U_{2}-i_{2} R_{2} \\
& i_{C_{2}}=i_{2}=C_{2} \frac{d u_{c_{2}}}{d t} \\
&=C_{2} \frac{d\left(-u_{2}-i_{2} R_{2}\right)}{d t} \\
&=-C_{2} \dot{U}_{2}-C_{2} R_{2} \dot{i}_{2} \\
& u_{1} \\
& C_{1}+\frac{1}{R_{1}} u_{1}=-C_{2} \dot{u}_{2}--_{2} R_{2}\left(C_{1} \ddot{u}_{1}+\frac{1}{R_{1}} \dot{U}_{1}\right)
\end{aligned}
$$

$$
c_{2} \dot{U}_{2}=t_{2} R_{2} c_{1} \ddot{U}_{1}-\left(C_{1}+\frac{c_{2} R_{2}}{R_{1}}\right) \dot{U}_{1}-\frac{1}{R_{1}} U_{1}
$$

$$
R_{1} C_{2} \dot{U}_{2}=-R_{1} R_{2} C_{1} C_{2} \ddot{U}_{1}-\left(R_{1} C_{1}+R_{2} C_{2}\right) \dot{U}_{1}-U_{1}
$$

Assignment \# 2.
Due: Thursday. 26th. Sept. 2013. 4:00 pm.
10^{\prime}

1) ${ }^{10}$ The mechanical system, as shown in Fig. I, has Fit) as the input and, $x(t)$ as the output.
Find the transfer function $T(s)=X(s) / F(s)$, with zero initial conditions.

Fig. 1.
2) ${ }^{10^{\prime}}$ The mechanical system, as shown in Fig. 2, has $x_{i}(t)$ as the input and $x_{0}(t)$ as the output.
Find the transfer function $T_{(s)}=X_{0}(s) / X_{i}(s)$, with zero initial conditions. In addition, the gravity can be neglected.
 but " m " cannot be neglected.

Fig. 2.
3) The height control system of a type of unmanned autonomous vehicle hus the following transfer function

$$
T(s)=\frac{y(s)}{R(s)}=\frac{s+1}{\left(s^{2}+6 s+10\right)(s+2)}
$$

(a) Find the impulse response of the system, that is, $r(t)=\delta(t), y(t)=$?
(b) Find the unit step reconse of the system, that is, $r(t)=u(t), \quad y(t)=?$
(C) What is the final value of the unit step response?

Solution for Assignment \#2.

1) Newton's and Law:

$$
F(t)-k x(t)=m \ddot{x}(t)
$$

Laplace Transform with zero initial conditions.

$$
\begin{aligned}
& F(s)-k X(s)=m s^{2} X(s) \\
& F(s)=\left(m s^{2}+k\right) X(s) \\
& T(s)=\frac{X(s)}{F(s)}=\frac{1}{m s^{2}+k}
\end{aligned}
$$

2) Free body diagram of mass "m."

$$
\begin{aligned}
& F_{B_{2}}(t)=f_{2} \dot{x}_{0}(t) \\
& F_{B_{3}(t)=}=f_{1}\left(\dot{x}_{i}(t)-\dot{x}_{0}(t)\right) \\
& F_{B_{1}}= \\
& F_{B_{1}}(t)-F_{B_{2}}(t)=m \cdot \ddot{x}_{0}(t)
\end{aligned}
$$

L.T. with zero initial conditions.

$$
\begin{aligned}
& F_{B_{1}(s)}-F_{B_{2}(s)}=m s^{2} X_{0}(s) \\
& f_{1} s X_{i(s)}-f_{1} s X_{0}(s)-f_{2} s X_{0}(s)=m s^{2} X_{0}(s) \\
& f_{1} s X_{i(s)}=I m s^{2}+\left(f_{1}+f_{2}\right) s I X_{0}(s) \\
& T_{(s)}=\frac{X_{0}(s)}{X_{i}(s)}=\frac{f_{1} s}{m s^{2}+\left(f_{1}+f_{2}\right) s}=\frac{f_{1}}{m s+f_{1}+f_{2}}
\end{aligned}
$$

3)

(a) $\quad r(t)=\delta(t), \quad R(s)=1$.

$$
\begin{aligned}
y(s)=T(s)-R(s) & =T(s) \\
& =\frac{s+1}{\left(s^{2}+6 s+10\right)(s+2)} \\
& =\frac{a_{1} s+a_{2}}{s^{2}+6 s+10}+\frac{a_{3}}{s+2} \\
a_{3} & =\left.(s+2) T(s)\right|_{s=-2}=-\frac{1}{2} \\
y(s) & =\frac{a_{1} s+a_{2}}{s^{2}+6 s+10}+\frac{-\frac{1}{2}}{s+2} \\
= & \frac{a_{1} s^{2}+2 a_{1} s+a_{2} s+2 a_{2}-\frac{1}{2} s^{2}-3 s-5}{\left(s^{2}+6 s+6\right)(s+2)} \\
= & \frac{s+1}{\left(s^{2}+6 s+10\right)(s+2)}
\end{aligned}
$$

$$
\left\{\begin{array}{rl}
-\frac{1}{2}+a_{1}=0 . & \\
2 a_{1}+a_{2}-3=1 \\
2 a_{2}-5=1
\end{array} \quad \Rightarrow \quad a_{1}=\frac{1}{2} .\right.
$$

Thus. $y(s)=\frac{\frac{1}{2} s+3}{s^{2}+6 s+10}-\frac{\frac{1}{2}}{s+2}$

$$
\begin{aligned}
&=\frac{1}{2} \frac{s+6}{(s+3)^{2}+1}-\frac{1}{2} \frac{1}{s+2} \\
&=\frac{1}{2}\left[\frac{s+3}{(s+3)^{2}+1}+\frac{3}{(s+3)^{2}+1}\right]-\frac{1}{2} \frac{1}{s+2} \\
& y(t)=\frac{1}{2}\left[e^{-3 t} \cos t+3 e^{-3 t} \sin t\right]-\frac{1}{2} e^{-2 t} \quad t \geq 0
\end{aligned}
$$

or

$$
y(t)=\frac{1}{2}\left(e^{-3 t} \cos t+3 e^{-3 t} \sin t-e^{-2 t}\right) u(t)
$$

(b)

$$
\begin{aligned}
r(t)=u(t), & R(s)=\frac{1}{s} \\
y(s)=R(s) T(s) & =\frac{s+1}{s(s+2)\left(s^{2}+6 s+10\right)} \\
& =\frac{a_{1}}{s}+\frac{a_{2}}{s+2}+\frac{a_{3} s+a_{4}}{s^{2}+6 s+10} \\
& =\frac{a_{1}(s+2)\left(s^{2}+6 s+10\right)+a_{2} s\left(s^{2}+6 s+10\right)+\left(a_{s} s+a_{4}\right) s(s+2)}{s(s+2)\left(s^{2}+6 s+10\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{1}\left(s^{3}+6 s^{2}+10 s+2 s^{2}+12 s+20\right)+a_{2}\left(s^{3}+6 s^{2}+10 s\right) \\
& +a_{3} s^{3}+2 a_{3} s^{2}+a_{4} s^{2}+2 a_{4} s \\
& s(s+2)\left(s^{2}+6 s+10\right) \\
& =\frac{\left(a_{1}+a_{2}+a_{3}\right) s^{3}+\left(8 a_{1}+6 a_{2}+2 a_{3}+a_{4}\right) s^{2}+\left(22 a_{1}+10 a_{2}+2 a_{4}\right) s+20 a_{1}}{\left.s(s+2) s^{2}+6 s+10\right)} \\
& =\frac{s+1}{s(s+2)\left(s^{2}+6 s+10\right)} \\
& \left\{\begin{array} { l }
{ a _ { 1 } + a _ { 2 } + a _ { 3 } = 0 . } \\
{ 8 a _ { 1 } + 6 a _ { 2 } + 2 a _ { 3 } + a _ { 4 } = 0 . } \\
{ 2 2 a _ { 1 } + 1 0 a _ { 2 } + 2 a _ { 4 } = 1 } \\
{ 2 0 a _ { 1 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a_{1}=\frac{1}{20} \\
a_{2}=\frac{1}{4} \\
a_{3}=-\frac{3}{10} \\
a_{4}=-\frac{13}{10}
\end{array}\right.\right. \\
& y(s)=\frac{1}{20} \frac{1}{s}+\frac{1}{4} \frac{1}{s+2}-\frac{1}{10} \frac{3 s+13}{(s+3)^{2}+1} \\
& =\frac{1}{20} \frac{1}{s}+\frac{1}{4} \frac{1}{s+2}-\frac{1}{10}\left(\frac{3(s+3)}{(s+3)^{2}+1}+\frac{4}{(s+3)^{2}+1}\right) \\
& y(t)=\frac{1}{20}+\frac{1}{4} e^{-2 t}-\frac{3}{10} e^{-3 t} \cos t-\frac{2}{5} e^{-3 t} \sin t \quad t \geqslant 0 \text {. }
\end{aligned}
$$

(c) $y(\infty)=\lim _{t \rightarrow \infty} y(t)=\frac{1}{20}$

Using FVT. (1) check poles.

$$
\left.\begin{array}{l}
S_{1}=0 . \\
S_{2}=-2 . \\
S_{3,4}=-3 \pm j
\end{array}\right\} \begin{aligned}
& \text { all in Left hand side } \\
& \text { of complex plane. }
\end{aligned}
$$

(2) Apply FVT.

$$
\begin{aligned}
f(\infty)=\lim _{s \rightarrow 0} s-y(s) & =\lim _{s \rightarrow 0} s \cdot \frac{s+1}{s(s+2)\left(s^{2}+6 s+(1)\right.} \\
& =\frac{1}{20}
\end{aligned}
$$

MECH 380 Automatic Control Engineering: Assignment III

Due: 4:00 pm, Oct. 7th, 2013
I. Problem 10^{\prime}

The system block diagram is as shown in Fig. 1. Find the transfer function from $R(s)$ to $Y(s)$. You

Fig. 1. System block diagram.
are required to obtain

$$
\Phi(s)=\frac{Y(s)}{R(s)}
$$

II. Problem 2 30'

The system block diagram is as shown in Fig. 2. Find the transfer function from $R(s)$ to $Y(s)$ and from $F(s)$ to $Y(s)$, respectively. You are required to obtain

$$
\Phi_{1}(s)=\frac{Y(s)}{R(s)},
$$

and

$$
\Phi_{2}(s)=\frac{Y(s)}{F(s)} .
$$

Fig. 2. System block diagram.

III. Problem 3 20'

The cloased-loop transfer function of a first-order system can be represented by

$$
\begin{equation*}
\Phi(s)=\frac{K}{T s+1}, \tag{1}
\end{equation*}
$$

where K and T are positive constants. The impulse response of this system can be shown in Fig. 3. Try to determine K and T.

Fig. 3. Impulse response of the 1st-order system.

Solution for Assignment III

Problem 1:

$$
\begin{aligned}
& \Rightarrow \xrightarrow{R_{1(} \rightarrow \infty} \rightarrow \begin{aligned}
\bar{\phi}_{(s)}= & \frac{Y_{(s)}}{R(s)} \\
= & \frac{G_{1}}{1+G_{1} \frac{G_{1}}{1-G_{2}}} \\
& =\frac{G_{1}\left(1-G_{2}\right)}{1-G_{2}+G_{1} G_{2}}
\end{aligned}
\end{aligned}
$$

Problem 2:
(1) $\Phi_{1}(s)=\frac{Y(s)}{R(s)}$ in this case $F(s)=0$. Thus, the original block diagram becomes.

$$
\begin{aligned}
\Phi_{1}(s)=\frac{Y(s)}{R(s)} & =\frac{\frac{G_{1} G_{2}}{1-G_{2} H_{2}}}{1+\frac{G_{1} G_{2}}{1-G_{2} H_{2}} \cdot H_{3}} \\
& =\frac{G_{1} G_{2}}{1-G_{2} H_{2}+G_{1} G_{2} H_{3}}
\end{aligned}
$$

(2) $\Phi_{2}(s)=\frac{Y(s)}{F(s)}$, in this case. $R(s)=0$. Thus. the original block diagram becomes

$$
\begin{aligned}
\Phi_{2}(s)=\frac{Y(s)}{F(s)} & =\left(1-G_{1} H_{1}\right) \frac{G_{2}}{1-G_{2} H_{2}+G_{1} G_{2} H_{3}} \\
& =\frac{G_{2}\left(1-G_{1} H_{1}\right)}{1-G_{2} H_{2}+G_{1} G_{2} H_{3}}
\end{aligned}
$$

Problem 3:
The transfer function $\Phi(s)=\frac{Y(s)}{R(s)}=\frac{K}{T S+1}$.
With the impulse signal, which means $r(t)=\delta(t), R(s)=1$
Then.

$$
\begin{aligned}
y(s) & =\Phi(s) R(s)=\Phi(s)=\frac{K}{T s+1} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{K}{T s+1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{K / T}{s+1 / T}\right\} \\
& =\frac{K}{T} e^{-t / T}, t \geq 0
\end{aligned}
$$

(1) When $t=0$. $y(t)=y(0)=\frac{K}{T}$, as shown in Fig. 3.

$$
\begin{equation*}
\frac{K}{T}=1.25 \tag{1}
\end{equation*}
$$

(2) when $t=T \quad y(t)=y(T)=\frac{K}{T} e^{-1}=0.368 \frac{K}{T}$

$$
\begin{aligned}
& =0.368 \times 1.25 \\
& \approx 0.4598 .
\end{aligned}
$$

Thus. if $y(t)=0.4598$, time t is the time constant T. From the figure, we have. $T=1.2$.

From equation (1) $k=1.25 \times T=1.5$.

Solution for Assignment IV.
Problem 1:
Transfer furctiso for inner lop

$$
\begin{aligned}
T_{1}(s) & =\frac{\frac{10}{s(s+1)}}{1+\frac{10}{s(s+1)} \tau S} \\
& =\frac{10}{s^{2}+s+10 \tau s} \\
& =\frac{10}{s(s+1+10 \tau)}
\end{aligned}
$$

Thus. the open- loop thruster function for this system is

$$
\begin{aligned}
G(s) & =K \cdot T_{1}(s) \\
& =\frac{10 k}{s(s+1+10 \tau)}
\end{aligned}
$$

General form of a $2 n d$-order system's open-loop Atansfor
function is functions is

$$
G(s)=\frac{w_{n}^{2}}{s\left(s+2 \zeta w_{n}\right)}
$$

Thus. $\left\{\begin{array}{l}10 K=\omega_{n}^{2} \\ 1+10 \tau=2 J \omega_{n}\end{array} \Rightarrow\left\{\begin{array}{l}\omega_{n}=\sqrt{10 K} \\ \zeta=\frac{1+10 \tau}{2 \sqrt{10 K}}\end{array} \Rightarrow\left\{\begin{array}{l}K=\frac{\omega_{n}^{2}}{10} \\ \tau=\frac{2 J \omega_{n}-1}{10}\end{array}\right.\right.\right.$

$$
\delta_{p}=e^{-\frac{y}{\sqrt{-g}} \pi}=0.163
$$

$$
\begin{aligned}
& \frac{-J}{\sqrt{1-s^{2}}} \pi=\ln 0.163=-1.81 \\
& \frac{y^{2}}{1-s^{2}}=\left(\frac{181}{\pi}\right)^{2}=0.33 . \\
& y^{2}=0.33-0,33 J^{2} \\
& \left(1+0.33 \cdot y^{2}=0.33\right. \\
& J=0.498 \\
& t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\sqrt{1-J^{2}} \omega_{n}}=1 \\
& \omega_{n}=\frac{\pi}{\sqrt{1-s^{2}}}=3.62 \\
& K=\frac{\omega_{n}^{2}}{10}=1.31 \\
& \tau=\frac{2 J \omega_{n}-1}{10}=0.26 .
\end{aligned}
$$

Problem. 2:

$$
G(s)=\frac{1}{s(s+0,6)}
$$

General form.

$$
\begin{aligned}
& G(s)=\frac{\omega_{n}^{2}}{s\left(s+2 j \omega_{n}\right)} \\
& \left\{\begin{array}{l}
\omega_{n}^{2}=1 . \\
2 y \omega_{n}=0,6
\end{array} \Rightarrow \quad \begin{array}{l}
\omega_{n}=1 \\
y=0,3 .
\end{array}\right. \\
& \sigma_{p}=e^{-\frac{y}{\sqrt{1-y^{2}}} \pi}=e^{-\frac{0.3}{\sqrt{1-0.09}} \pi}=0,3723=37,23 \% \\
& t_{r}=\frac{\pi-\theta}{\omega_{n} \sqrt{1-\xi^{2}}}=1.97 . \\
& \theta=\arctan \frac{\sqrt{1-y^{2}}}{y .}=1.266 . \\
& t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\sqrt{1-s^{2}} \omega_{n}}=\frac{\pi}{\sqrt{1-0,09}}=3.29 \\
& t_{s}= \begin{cases}\frac{4}{J \omega_{n}}=13.3 & \Delta=0.02 \\
\frac{3}{J \omega_{n}}=10 . & \Delta=0,05\end{cases}
\end{aligned}
$$

Problem 3:
From the figure.

$$
\begin{aligned}
& V_{p}=\frac{11-1}{1} \times 100 \%=10 \% . \\
& t_{p}=0.1 \\
& \delta_{p}=e^{-\sqrt[y y y]{1-\rho} \pi}=0.1 \\
& \frac{-1}{\sqrt{1-y^{2}}} \pi=\ln 0.1=-2.303 . \\
& \frac{s}{\sqrt{1-y^{2}} \pi}=2.303 . \\
& \frac{y^{2}}{1-y^{2}}=0.538 \text {. } \\
& y^{2}=0.538-0.538 y^{2} \\
& y^{2}=0.35 \\
& y=0,5 \% \text {. } \\
& t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\sqrt{1-J^{2} \omega_{n}}}=0.1 \\
& \omega_{n}=\frac{\pi}{\sqrt{1-J^{2}} 0,1}=38.9 . \\
& G(s)=\frac{\omega_{n}^{2}}{s\left(s+2 s \omega_{n}\right)}=\frac{1513.2}{s(s+45.9) .}
\end{aligned}
$$

Soluturs for Assignment \#5

1. Solution:

Time domain: $y(t)=1+e^{-t}-e^{-2 t} \quad(t \geqslant 0)$
Frequency domain: $y(s)=\frac{1}{s}+\frac{1}{s+1}-\frac{1}{s+2}$.

$$
\begin{aligned}
y_{(s)} & =\frac{1}{s}+\frac{1}{s+1}-\frac{1}{s+2} \\
& =\frac{(s+1)(s+2)+s(s+2)-s(s+1)}{s(s+1)(s+2)} \\
& =\frac{s^{2}+3 s+2+s^{2}+2 s-s^{2}-s}{s(s+1)(s+2)} \\
& =\frac{s^{2}+4 s+2}{s(s+4(s+2)}
\end{aligned}
$$

The ranger function $\Phi(s)=\frac{Y(s)}{R(s)}=\frac{Y(s)}{1 / s}=\frac{s^{2}+4 s+2}{(s+1)(s+2)}$
Two poles at $-1,-2$. both are negative.
\Rightarrow The system is stable
2. Solution: $D(s)=s^{4}+2 s^{3}+s^{2}+2 s+1=0$.

C_{1}	V			
	C_{2}	V		
Rout Table:	s^{4}	1	1	1
		s^{3}	2	2
	s^{2}	0	1	
	s^{1}			
	s^{0}			

First element in S^{2} row is 0 .
(1) Try to use $s=\frac{1}{x}$

$$
\begin{aligned}
D(x) & =\frac{1}{x^{4}}+\frac{2}{x^{3}}+\frac{1}{x^{2}}+\frac{2}{x}+1=0 \\
& =x^{4}+2 x^{3}+x^{2}+2 x+1=0 .
\end{aligned}
$$

(b) $\left.D_{1} x\right)$ is exactly the same as $D(s)$, it does not help.
(2) Try to multiply $s+a$ to Dis).

$$
\begin{aligned}
\bar{D}(s) & =D(s)(s+a) \quad \text { choose } a=2 \\
& =D(s)(s+2) \\
& =\left(s^{4}+2 s^{3}+s^{2}+2 s+1\right)(s+2) \\
& =s^{5}+2 s^{4}+2 s^{4}+4 s^{3}+s^{3}+2 s^{2}+2 s^{2}+4 s+s+2 \\
& =s^{5}+4 s^{4}+5 s^{3}+4 s^{2}+5 s+2
\end{aligned}
$$

Routh Table:

s^{5}	1	5	5
s^{4}	4	4	2
s^{3}	4	4.5	
s^{2}	-0.5	2	
s^{1}	20,5		
s^{0}	2.		

The system is not stable. two positive cereal) complex with positive real parts poles exist.
3. Solution: Open-loop Transfer Function

$$
G(s)=\frac{K^{\prime}}{s(0,15+1)(0,25 s+1)}
$$

Characteristic equation:

$$
\begin{aligned}
D(s) & =s(0.1 s+1)(0.25 s+1)+k=0 . \\
\Leftrightarrow D(s) & =s(s+10)(s+4)+40 k=0 . \\
& =s\left(s^{2}+14 s+40\right)+40 k \\
& =s^{3}+14 s^{2}+40 s+40 k
\end{aligned}
$$

Define $s=z-2$. As long, as $\operatorname{Re}(z)<0$, $\operatorname{Re}(s)$ will be smaller than -2, ie., 5 locates on the left hand side of $-2 \pm j \omega$.

$$
\begin{aligned}
D(z) & =(z-2)^{3}+14(z-2)^{2}+40(z-2)+40 k \\
& =z^{3}-6 z^{2}+12 z-8+14 z^{2}-56 z+56+40 z-80+40 k \\
& =z^{3}+8 z^{2}-4 z-32+40 k
\end{aligned}
$$

$C_{1} V$
C_{2} Fail. \Rightarrow There is no such a K that can satisfy the requirement

Solution for etssignment \#6.
1.

$$
\begin{aligned}
R(s) & =\frac{5}{s^{2}+25} \\
\Phi_{\text {e(s) }} & =\frac{1}{1+G(s)} \\
& =\frac{1}{1+\frac{100}{s(0,1 s+1)}} \\
& =\frac{s(0,1 s+1)}{s(0,15+1)+100}
\end{aligned}
$$

Characteristio equation $D_{(s)}=S(0.15+1)+100=0$.

This system is stuble. steady stute evor exists.

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s \cdot R_{(s)} \Phi_{e}(s) \\
& =\lim _{s \rightarrow 0} s \cdot \frac{5}{s^{2}+25} \frac{s(0,1 s+1)}{s(0,1 s+1)+100} \\
& =0
\end{aligned}
$$

2.1) The closed-loop transfer function from R(s) to $Y /(s)$

$$
\begin{aligned}
\Phi(s) & =\frac{\frac{20}{0.05 s+1} \frac{1}{s+5}}{1+\frac{20}{0.05 s+1} \frac{1}{s+5} 25} \\
& =\frac{20 .}{(0.05 s+1)(s+5)+50}
\end{aligned}
$$

Characteristic equation $D(s)=(0,055+1)(s+5)+50$

$$
\begin{aligned}
& =0.055^{2}+1.255+50=0 . \\
& C_{1} \quad V \\
& C_{2} \sqrt{ }
\end{aligned}
$$

Routh Tuble $S^{2} 0.05 \quad 2550$

$$
s^{\prime} \quad 1.25
$$

This syystem is stable, steady stule enor exists. Trunsfer function from Fis) to E(s).

$$
\begin{aligned}
\Phi_{\text {fe }}(s) & =\frac{-\frac{1}{s+5} 2.5}{1+\frac{20}{0.05 s+1} \frac{1}{s+5} 2,5} \\
& =\frac{-2,5(0.05 s+1)}{(0.05 s+1)(s+5)+50}
\end{aligned}
$$

$$
\begin{aligned}
e_{s f}=\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi_{\text {fecs }} & =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-2,5(0,05 s+1)}{(0,055+1)(s+5)+1+0} \\
& =2 \cdot \frac{-2.5}{5+50}=\frac{-5}{55}=-\frac{1}{11}
\end{aligned}
$$

Block diagram

2) If add $\frac{1}{s}$ before $F(s)$, we need to check the stability again.

$$
\begin{aligned}
& \Phi_{(s)}=\frac{\frac{1}{s} \frac{20}{0.05 s+1} \frac{1}{s+5}}{1+\frac{1}{s} \frac{20}{0.05 s+1} \frac{1}{s+5} 25} \\
&=\frac{20}{s(15+5)(0.05 s+1)+50} \\
& D(s)=s(s+5)(0.05 s+1)+50 \\
&=S\left(0.05 s^{2}+1.25 s+1\right)+50 \\
&=0.05 s^{3}+125 s^{2}+s+50=0 \\
& c_{1} v \\
& c_{2} V
\end{aligned}
$$

Routh Table: $s^{3} 0,05$,
$\begin{array}{lll}s^{2} & 1.25 \quad 50 .\end{array}$

$$
s^{\prime} \quad 1
$$

This system is stable. Steady state enor exists.

$$
\begin{aligned}
& \Phi_{f(s)}=\frac{-\frac{1}{s+5} 2,5}{1+\frac{20}{0,05 s+1} \frac{1}{s+5} \frac{1}{s} 25} \\
&=\frac{-2,5 s(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& \begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi f(s) \\
& =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-25 s(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& =0 .
\end{aligned}
\end{aligned}
$$

3). The characteristic equation is the same as in 2 ? Thus, steady state error exists.

$$
\begin{aligned}
\Phi_{\text {fess }} & =\frac{-\frac{1}{s} \frac{1}{s+5} 2,5}{1+\frac{20}{0,05 s+1} \frac{1}{s+5} \frac{1}{s} 25} \\
& =\frac{-2,5(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& \begin{aligned}
e_{s s f} & =\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi \text { fees } \\
& =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-2,5(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& =\frac{-5}{50}=-\frac{1}{10}
\end{aligned}
\end{aligned}
$$

4) By adding $\frac{1}{s}$ before F(s), the steady state enor under step input can be eliminated: Addling $\frac{1}{s}$ after F(s) cannot.
3. Closed-bopp transfer function 1/TST1.
\Rightarrow Open-loop transfer function $G(S)=\frac{1}{T S}$

$$
\dot{\Phi}(s)=\frac{G(s)}{1+G(s)}=\frac{\frac{1}{T S}}{1+\frac{1}{T S}}=\frac{1}{T s+1}
$$

actual

$R(s)$ is a step signal $\quad R(s)=\frac{A}{S}$

$$
r(t)=A u(t) .
$$

For this 1 ist-order system $y(t)=A\left(1-e^{-t / t}\right), t \geq 0$.
After 1 min $=60$ seconds. $y(60)=98 \% \mathrm{~A}$

$$
=A\left(1-e^{-60 /}\right)
$$

$$
\begin{array}{ll}
\Rightarrow & 1-e^{-60 \%}=0,98 \\
\Rightarrow & T=15.35
\end{array}
$$

If the increasing rate is $10^{\circ} \mathrm{C} / \mathrm{min}=1^{\circ} \mathrm{C} / \mathrm{s}$.

$$
\begin{aligned}
\Rightarrow \quad r(t) & =\frac{1}{6} t \\
& R(s)
\end{aligned}=\frac{1}{6} \frac{1}{s^{2}} \text {. }
$$

This system is Type I system. $K_{v}=K=\frac{1}{T}$

$$
e_{s s}=\frac{1}{k_{V}} \frac{1}{6}=\frac{1}{6} T=2.55^{\circ} \mathrm{C} .
$$

2.1) The closed-loop transfer function from R(s) to $Y /(s)$

$$
\begin{aligned}
\Phi(s) & =\frac{\frac{20}{0.05 s+1} \frac{1}{s+5}}{1+\frac{20}{0.05 s+1} \frac{1}{s+5} 25} \\
& =\frac{20 .}{(0.05 s+1)(s+5)+50}
\end{aligned}
$$

Characteristic equation $D(s)=(0,055+1)(s+5)+50$

$$
\begin{aligned}
& =0.055^{2}+1.255+50=0 . \\
& C_{1} \quad V \\
& C_{2} \sqrt{ }
\end{aligned}
$$

Routh Tuble $S^{2} 0.05 \quad 2550$

$$
s^{\prime} \quad 1.25
$$

This syystem is stable, steady stule enor exists. Trunsfer function from Fis) to E(s).

$$
\begin{aligned}
\Phi_{\text {fe }}(s) & =\frac{-\frac{1}{s+5} 2.5}{1+\frac{20}{0.05 s+1} \frac{1}{s+5} 2,5} \\
& =\frac{-2,5(0.05 s+1)}{(0.05 s+1)(s+5)+50}
\end{aligned}
$$

$$
\begin{aligned}
e_{s f}=\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi_{\text {fecs }} & =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-2,5(0,05 s+1)}{(0,055+1)(s+5)+1+0} \\
& =2 \cdot \frac{-2.5}{5+50}=\frac{-5}{55}=-\frac{1}{11}
\end{aligned}
$$

Block diagram

2) If add $\frac{1}{s}$ before $F(s)$, we need to check the stability again.

$$
\begin{aligned}
& \Phi_{(s)}=\frac{\frac{1}{s} \frac{20}{0.05 s+1} \frac{1}{s+5}}{1+\frac{1}{s} \frac{20}{0.05 s+1} \frac{1}{s+5} 25} \\
&=\frac{20}{s(15+5)(0.05 s+1)+50} \\
& D(s)=s(s+5)(0.05 s+1)+50 \\
&=S\left(0.05 s^{2}+1.25 s+1\right)+50 \\
&=0.05 s^{3}+125 s^{2}+s+50=0 \\
& c_{1} v \\
& c_{2} V
\end{aligned}
$$

Routh Table: $s^{3} 0,05$,
$\begin{array}{lll}s^{2} & 1.25 \quad 50 .\end{array}$

$$
s^{\prime} \quad 1
$$

This system is stable. Steady state enor exists.

$$
\begin{aligned}
& \Phi_{f(s)}=\frac{-\frac{1}{s+5} 2,5}{1+\frac{20}{0,05 s+1} \frac{1}{s+5} \frac{1}{s} 25} \\
&=\frac{-2,5 s(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& \begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi f(s) \\
& =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-25 s(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& =0 .
\end{aligned}
\end{aligned}
$$

3). The characteristic equation is the same as in 2 ? Thus, steady state error exists.

$$
\begin{aligned}
\Phi_{\text {fess }} & =\frac{-\frac{1}{s} \frac{1}{s+5} 2,5}{1+\frac{20}{0,05 s+1} \frac{1}{s+5} \frac{1}{s} 25} \\
& =\frac{-2,5(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& \begin{aligned}
e_{s s f} & =\lim _{s \rightarrow 0} s \cdot F(s) \cdot \Phi \text { fees } \\
& =\lim _{s \rightarrow 0} s \cdot \frac{2}{s} \cdot \frac{-2,5(0,05 s+1)}{s(s+5)(0,05 s+1)+50} \\
& =\frac{-5}{50}=-\frac{1}{10}
\end{aligned}
\end{aligned}
$$

4) By adding $\frac{1}{s}$ before F(s), the steady state enor under step input can be eliminated: Addling $\frac{1}{s}$ after F(s) cannot.
3. Closed-bopp transfer function 1/TST1.
\Rightarrow Open-loop transfer function $G(S)=\frac{1}{T S}$

$$
\dot{\Phi}(s)=\frac{G(s)}{1+G(s)}=\frac{\frac{1}{T S}}{1+\frac{1}{T S}}=\frac{1}{T s+1}
$$

actual

$R(s)$ is a step signal $\quad R(s)=\frac{A}{S}$

$$
r(t)=A u(t) .
$$

For this 1 ist-order system $y(t)=A\left(1-e^{-t / t}\right), t \geq 0$.
After 1 min $=60$ seconds. $y(60)=98 \% \mathrm{~A}$

$$
=A\left(1-e^{-60 /}\right)
$$

$$
\begin{array}{ll}
\Rightarrow & 1-e^{-60 \%}=0,98 \\
\Rightarrow & T=15.35
\end{array}
$$

If the increasing rate is $10^{\circ} \mathrm{C} / \mathrm{min}=1^{\circ} \mathrm{C} / \mathrm{s}$.

$$
\begin{aligned}
\Rightarrow \quad r(t) & =\frac{1}{6} t \\
& R(s)
\end{aligned}=\frac{1}{6} \frac{1}{s^{2}} \text {. }
$$

This system is Type I system. $K_{v}=K=\frac{1}{T}$

$$
e_{s s}=\frac{1}{k_{V}} \frac{1}{6}=\frac{1}{6} T=2.55^{\circ} \mathrm{C} .
$$

Solution for Assignment \#7.

1. (1)

$$
\begin{aligned}
y(s) & =\frac{1}{s}-1.8 \frac{1}{s+4}+0.8 \frac{1}{s+9} \\
& =\frac{36}{s(s+4)(s+9)}
\end{aligned}
$$

Thus, the transfer function is

$$
\Phi(s)=\frac{36}{(s+4)(s+9)} \longrightarrow \text { This system is stable }
$$

$$
\begin{aligned}
& x(t)=\sin \omega t \\
& \Phi_{(j \omega)}=\frac{36}{(j \omega+4)(j \omega+9)} \\
& =\frac{36}{36-\omega^{2}+13 \omega j} \\
& |\Phi(i \omega)|=\frac{36}{\sqrt{\left(36-\omega^{2}\right)^{2}+(13 \omega)^{2}}} \\
& \begin{aligned}
\omega=4 . \\
\quad|\Phi(j \omega)|=0.6923 .0 .6462
\end{aligned} \\
& \varphi=\angle \Phi(j \omega)=-\arctan \frac{13 \omega}{36-\omega^{2}}=-7.7760-1.2036 \\
& =-67.38^{\circ}-68.96^{\circ}
\end{aligned}
$$

$$
\text { Thus. } \quad y \operatorname{ssc} t)=|\Phi(j \omega)| \sin (\omega t+\varphi)
$$

$$
=0.6923 \sin \left(4 t-67.30^{\circ}\right)
$$

(2)

$$
0.6462 \quad 68.96^{\circ}
$$

$$
\begin{aligned}
& \omega=7 . \\
& \varphi=\angle \Phi\left(j(j \omega) \left\lvert\,=-\arctan \frac{1330}{36-0^{2}}-\pi=-\pi .7243-1.7127\right.\right. \\
& \text { Thus. } \quad y / s(t)=-93.79^{\circ}-98.13^{\circ} \\
&
\end{aligned}
$$

$$
\begin{aligned}
y_{s(c}(t)= & 0.4235 \sin \left(7 t-98.79^{\circ}\right) \\
& 0.39 \quad 98.13^{\circ}
\end{aligned}
$$

(3) (3)

$$
\begin{aligned}
\Phi(s) & =\frac{36}{(s+4)(s+4)} \quad \Phi(j \omega)=\frac{1}{\left(\frac{1}{4} j \omega+1\right)\left(\frac{1}{9} j \omega+1\right)} \\
& =\frac{1}{\left(\frac{1}{4} s+1\right)\left(\frac{1}{9} s+1\right)}
\end{aligned}
$$

There is no integral. when $\omega=0 \quad|\Phi(i \omega)|=1 \quad \angle \Phi(y \omega)=0$

$$
\omega=\infty \quad|\Phi(j \omega)|=0 \quad \angle \Phi(j \omega)=-180^{\circ}
$$

Nyquist plot

(4) Comer frequency

$4 \mathrm{rad} / \mathrm{s}$	$9 \mathrm{rad} / \mathrm{s}$
$-20 \mathrm{~dB} / \mathrm{dec}$	$-20 \mathrm{~dB} / \mathrm{dec}$.

There is no guin or integral, So in the bow frequency area. $L(\omega)=0 d B$.

(5) At comer frequency, in the approximated Bode Plot, $L(4)=0 \mathrm{~dB}$.

Thus. the error between the actual \& approximated ones is $-3.74 / 14 d / d$
2.

$$
\begin{aligned}
T(s) & =\frac{\frac{35}{3}\left(s+\frac{1}{7}\right)}{s\left(s+\frac{1}{3}\right)\left(s^{2}+\frac{1}{2} s+\frac{1}{4}\right)} \\
& =\frac{20(7 s+1)}{s(3 s+1)\left(4 s^{2}+2 s+1\right)}
\end{aligned}
$$

Gain $K=20$.
Integral $\quad V=1$

1st-order derivative
Inertia
Oscillation

$$
\begin{array}{ll}
w_{1}=\frac{1}{7} & +20 \mathrm{~dB} / \mathrm{dec} \\
\omega_{2}=\frac{1}{3} & -20 \mathrm{~dB} / \mathrm{dec} \\
\omega_{3}=\frac{1}{2} & -40 \mathrm{~dB} / \mathrm{dec} .
\end{array}
$$

3. From the Bode Plot, there is no $\frac{1}{s}$ but a Gain.

$$
\text { poly } K=40 \quad K=100 .
$$

Two inertia exist.

$$
T(s)=\frac{k}{\left(\frac{1}{w_{1}} s+1\right)\left(\frac{1}{w_{2}} s+1\right)}=\frac{100 w_{1} w_{2}}{\left(s+w_{1}\right)\left(s+w_{2}\right)}
$$

4. From the Bode Plot, except for the given gain, there exist two integrals, one 1st-order derivative and one inertia.

$$
T(s)=\frac{K\left(\frac{1}{w_{1}} s+1\right)}{s^{2}\left(\frac{1}{w_{2}} s+1\right)}
$$

Jolution for Assignoment \#8
1.
(1)

$$
\begin{aligned}
& C_{1}=\frac{1}{G_{2}}+\frac{1}{H} \\
& C_{1}=\frac{\frac{1}{G_{2}}}{1-\frac{1}{G_{2} H}}=\frac{H}{G_{2} H_{2}-1} \\
& C_{2}=\frac{H}{1-G_{3} H}
\end{aligned}
$$

$$
\begin{aligned}
& T(s)=\frac{Y(s)}{R_{R}(s)}=\frac{G_{1} G_{12}}{1+G_{1} G_{2} C_{1} C_{2}}=\frac{G_{11} G_{22}}{1+G_{3} G_{2} \frac{11^{2}}{\left.\left(G_{2}+11\right)+(1)-G_{s} H\right)}}=\frac{G_{1} G_{2}\left(1-G_{3} H\right)}{1-G_{3} H+G_{1} H+G_{1} G_{2}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& T(s)=\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1} H} \\
& \begin{aligned}
H=\frac{G_{2}}{1-G_{2}} \quad T(s) & =\frac{G_{1}}{1+G_{1} \frac{G_{2}}{1-G_{2}}} \\
& =\frac{G_{1}\left(1-G_{22}\right)}{1-G_{2}+G_{1} G_{2}}
\end{aligned}
\end{aligned}
$$

2. The thanfer function from Riss to Eis is

$$
\begin{aligned}
\Phi_{e(s)} & =\frac{1-\frac{\lambda_{2} s^{2}+\lambda_{1} s \frac{K_{2}}{T s+1} s(s+2 \xi)}{1+\frac{K_{1} K_{2}}{s(s+2 \xi)}}}{} \\
= & \frac{\left.T s^{3}+12 \xi T+1\right) s^{2}+2 \xi s-K_{2} \lambda_{2} s^{2}-K_{2} \lambda_{1} s}{s(s+2 \xi)(T s+1)+K_{1} K_{2}(T s+1) .}
\end{aligned}
$$

stability cheek.

$$
\begin{array}{rl}
D(s) & =T s^{3}+12 \xi T+11 s^{2}+2 \xi s+k_{1} k_{2} T s+k_{1} k_{2} \\
& =0,2 s^{3}+1.2 s^{2}+21 s+100 . \\
C_{1} & V \\
C_{2} V \\
s^{3} & 0.2 \\
s^{2} & 1-2 \\
s^{\prime} & 21 \\
s^{0} \frac{1222-20}{11-20} & 100 \\
s^{0} & 100
\end{array}
$$

System is stable.
To make it a type III system

$$
\left\{\begin{array} { l }
{ 2 \xi T + 1 - k _ { 2 } \lambda _ { 2 } = 0 . } \\
{ 2 \xi - k _ { 2 } \lambda _ { 1 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\lambda_{2}=\frac{2 \xi T+1}{k_{2}}=0,024 \\
\lambda_{1}=\frac{2 \xi}{k_{2}}=0,02
\end{array}\right.\right.
$$

3. Routh Table

s^{6}	1	-4	-7	10	
s^{5}	$14)$	1	-2		
	(4)	(-8)		$F(s)=-s^{4}-s^{2}+2$	
s^{4}	-5	-5	10	$F^{\prime}(s)=-4 s^{3}-2 s$	
s^{3}	(-1)	(-1)	(2)		
s^{2}	0	0	0		
s^{2}	(-2)	(-2)	(-2)		
s^{1}	$-\frac{1}{2}$	2			
s^{0}	-9				

Two positive poles.

$$
\begin{array}{ll}
F(s)=0 . \quad & s^{4}+s^{2}-2=0 . \\
& s_{1,2}= \pm \sqrt{2} j \\
& s_{3.4}= \pm 1 .
\end{array}
$$

4.

$$
\Phi(s)=\frac{8}{s^{2}+(2+8 a) s+8}
$$

(1) $a=0$.

$$
\begin{aligned}
& \bar{\Phi}(s)=\frac{8}{s^{2}+2 s+8} \\
& \omega_{n}=\sqrt{8} \mathrm{rad} / \mathrm{s} . \\
& \xi=\frac{1}{\omega_{n}}=\frac{1}{\sqrt{8}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \omega_{n}=\sqrt{8} \\
& 2+8 a=2 \xi \omega_{n} . \quad \xi=0,7 . \\
& a=\frac{2 \xi \omega_{n}-2}{8} \\
& =\frac{0,7 \sqrt{8}-1}{4}
\end{aligned}
$$

5.

$$
\begin{aligned}
G(s) H(s) & =\frac{75(0.2 s+1)}{100 s\left(\frac{1}{10} s^{2}+\frac{16}{100} s+1\right)} \\
& =\frac{0,25(0.2 s+1)}{s\left(\frac{1^{2}}{10} s^{2}+\frac{16}{100} s+1\right)}
\end{aligned}
$$

Inteyral $\frac{1}{s}$ Gain 0,25.

1st-order	$T=0.2$	$\omega=5$	$+90^{\circ}$	trodeldec
Oscillation	$T=0.1$	$\omega=10$	-180°	$-40 \mathrm{~dB} / \mathrm{dec}$

6. $\quad G(s)=\frac{10(10 s+1)(0,1 s+1)}{s^{3}(0.015+1)}$

